Three sites and you are out: ternary synergistic allostery controls aromatic amino acid biosynthesis in Mycobacterium tuberculosis.
نویسندگان
چکیده
3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, the pathway responsible for the biosynthesis of the aromatic amino acids Trp, Phe, and Tyr. Unlike many other organisms that produce up to three isozymes, each feedback-regulated by one of the aromatic amino acid pathway end products, Mycobacterium tuberculosis expresses a single DAH7PS enzyme that can be controlled by combinations of aromatic amino acids. This study shows that the synergistic inhibition of this enzyme by a combination of Trp and Phe can be significantly augmented by the addition of Tyr. We used X-ray crystallography, mutagenesis, and isothermal titration calorimetry studies to show that DAH7PS from M. tuberculosis possesses a Tyr-selective site in addition to the Trp and Phe sites, revealing an unusual and highly sophisticated network of three synergistic allosteric sites on one enzyme. This ternary inhibitory response, by a combination of all three aromatic amino acids, allows a tunable response of the protein to changing metabolic demands.
منابع مشابه
Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis.
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS...
متن کاملProbing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids
Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobact...
متن کاملCrystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis.
The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised m...
متن کاملThe Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages.
In this work, we characterize genes in Mycobacterium tuberculosis that are regulated by IdeR (iron-dependent regulator), an iron-responsive DNA-binding protein of the DtxR family that has been shown to regulate iron acquisition in Mycobacterium smegmatis. To identify some of the genes that constitute the IdeR regulon, we searched the M. tuberculosis genome for promoter regions containing the co...
متن کاملMechanistic insights from the crystal structures of a feast/famine regulatory protein from Mycobacterium tuberculosis H37Rv
Rv3291c gene from Mycobacterium tuberculosis codes for a transcriptional regulator belonging to the (leucine responsive regulatory protein/regulator of asparigine synthase C gene product) Lrp/AsnC-family. We have identified a novel effector-binding site from crystal structures of the apo protein, complexes with a variety of amino acid effectors, X-ray based ligand screening and qualitative fluo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 425 9 شماره
صفحات -
تاریخ انتشار 2013